Индукционные светильники и лампы для растений в теплице – выращиваем в теплице

Организация освещения в теплице и советы по выбору ламп

В наше время многие огородники, которые любят питаться продуктами со своей грядки, задумываются о строительстве парников. Россиянам пришлись по душе фрукты и овощи, растущие раньше только в южных краях, поэтому многие решаются создать теплицу, чтобы разнообразить свой рацион.

После того как сама теплица готова, созданы грядки, продуман полив и обогрев культур, необходимо задуматься о подсветке. Летом солнечных лучей хватает, и растения растут хорошо. Когда солнечных лучей становится меньше, важно правильно организовать освещение в теплице и изучить плюсы и минусы разных видов светильников.

Значение света для растений

Во многих регионах нашей страны достаточное количество света культуры получают только летом, таким образом, без дополнительной подсветки просто не обойтись. Если растениям не будет хватать дневного света, искусственное освещение теплиц будет некачественное, они начнут чахнуть, а в дальнейшем погибнут.

Рост растений происходит по законам фотосинтеза, ведь это основа их питания. Только при участии света в растении образуются органические вещества.

Условия, необходимые для фотосинтеза

Недостаточное потребление солнечного света может привести к следующим дефектам в процессе роста:

  • у растения меняется форма и оно медленно растет;
  • растение не цветет, а значит урожая тоже не будет;
  • черенки и стебли неестественно удлиняются;
  • происходит пожелтение нижних листьев.

Пожелтение нижних листьев может говорить о недостаточном освещении

Таким образом, чтобы получить хороший урожай, нужно правильно регулировать длительность и интенсивность освещения. Зимой в теплицах необходимо применять дополнительную подсветку. При освещении теплицы светодиодными лампами требуется достаточное количество искусственного света.

По интенсивности и длительности необходимого для них излучения растения подразделяются на следующие виды:

  1. Растения короткого дня. Они зацветают осенью или зимой, когда день короче ночи и в помещениях используется искусственное освещение. Сокращение светового дня приводит к тому, что растения зацветают. Темнота необходима им лишь во время вегетации, а потом они могут благополучно расти и приносить урожай в условиях длинного дня.

Огурец – растение короткого дня

  1. Растения длинного дня. Эти растения смогут зацвести, если световой день будет превышать 13 часов. При коротком дне плоды у этих растений слабо формируются или совсем не образуются.
  2. Растения, на которые продолжительность светового дня не влияет. Они зацветают при любой продолжительности освещения, кроме очень короткой. В случае слишком короткого по длительности освещения культура постепенно увядает.

Какое освещение должно быть в теплице?

Наилучшим образом на рост растений влияют красные и синие лучи света.

Влияние света на рост растения

Но культур нельзя лишать естественного освещения. Из-за этого вкус плодов ухудшается, они даже могут быть несъедобны. Освещение лучами одного цвета полезно лишь для цветов – они становятся ярче и красивее. Ниже приведено влияние разных лучей на растение:

  • использование синих лучей для парника улучшает процессы фотосинтеза;
  • освещение зелеными и желтыми лучами приводит к деформированию формы и изменению толщины стеблей;
  • на процессы цветения благоприятно влияют красные и оранжевые лучи, правда если их слишком много, растение со временем может погибнуть;
  • влияние ультрафиолета полезно – в листьях формируется больше витаминов, кроме того, растение начинает хорошо противостоять холодам.

Красные и синие лучи в теплице

Чтобы установить правильное освещение, а в дальнейшем получить хороший урожай, обязательно учитывайте следующие правила:

  1. Нельзя применять освещение лучами только одного цвета. Применение инфракрасных или ультрафиолетовых лучей в течение длительного времени может негативно сказаться на урожае.
  2. Экспериментальным методом необходимо определить наиболее подходящее расстояние от источника света до листьев.
  3. Соблюдайте нормы освещения. Изучив специализированную литературу, узнайте, какое оптимальное освещение необходимо для каждого сорта культур. При организации подсветки обязательно учитывайте эту информацию.

Виды ламп для теплиц

При установке светильников старайтесь не загораживать солнечные лучи, иначе есть вероятность лишить растение естественного источника света. По этой же причине покрытие парников необходимо периодически мыть, если это стекло или пленка, например.

Стеклянную поверхность парника периодически нужно мыть

Материал светильников очень важен. Лучше, если он будет сделан из металла, не подверженного коррозии, а саму конструкцию нужно защитить от влажности.

Выбирая лампы для парников и теплиц, обратите внимание на следующие характеристики:

  • Производитель. Выбирайте продукцию проверенного изготовителя. Обычно их продукция соответствует стандартам, иногда возможно гарантийное обслуживание.
  • Мощность. Это значение показывает количество энергии, потраченной за час.
  • Количество излучаемой энергии. Зная это значение, можно точно рассчитать необходимое количество светильников для теплицы.
  • Световой спектр. Его лучше подбирать светодиодами методом тестирования в зависимости от того, какое растение выращивается в парнике.

Рассмотрим основные лампы для теплицы, информация ниже поможет определиться с вопросом, какие лампы выбрать.

Лампа накаливания

Теоретически возможно осветить теплицу, используя «лампочки Ильича».

Использование ламп накаливания в теплицах возможно, но нежелательно

Если теплица сделана из поликарбоната, такой светильник применять крайне нежелательно. Лампы накаливания излучают лишь красный диапазон света, который плохо подходит для растений. Итак, достоинством этих светильников является разве что их невысокая стоимость, тогда как минусов от их использования много:

  • В их лучах отсутствует синий цвет – преобладают инфракрасные, оранжевые и красные лучи.
  • Их свет может повредить листья – они начинают деформироваться, при этом стебли становятся тонкими, растение не растет.
  • Такой светильник сильно нагревается, что не очень хорошо для безопасности рассады. Правда благодаря этому на отоплении зимой можно сэкономить, но лучше не рисковать. Разве что для выгонки зеленых культур она подходит идеально.
  • Такие светильники расходуют неоправданно много энергии. Для сравнения – светодиодные изделия потребляют в несколько раз меньше энергии при том же уровне освещенности.

Люминесцентные лампы

Люминесцентные светильники потребляют мало энергии, поэтому использовать их выгодно. Другое их название – энергосберегающие лампы для теплиц, они часто применяются для выращивания рассады.

Люминесцентные лампы для теплицы

Если вы предпочли этот вид ламп, обратите внимание на свет, который они излучают:

  • Холодный белый свет применяется часто и является бюджетным вариантом. Его целесообразно использовать в качестве фона, а не для точечной направленной подсветки.
  • Теплый белый свет ценится больше, и стоимость таких лампочек повыше, поскольку он содержит некоторое количество красных лучей, полезных растению. Такие светильники часто применяются людьми, выращивающими цветы.
  • Комбинируя холодный и теплый свет в одном приборе, можно получить отличный результат. Результатом такого объединения будет экономия и достаточное количество полезных для культуры лучей.
  • В продаже встречаются специализированные светильники, в которых спектр излучения подбирается очень тщательно, чтобы польза для растения была максимальной при минимальном энергопотреблении. Они либо стимулируют растение к активному росту, либо направлены на увеличение количества завязей плодов.

Их можно устанавливать в горизонтальном и в вертикальном положении. Очень сильно количество вырабатываемого света и яркость светильников зависит от напряжения – если его существенно не хватает, источник света может не работать.

Натриевые лампы

Если сравнивать НЛВД с другими лампочками, они обладают наибольшей светоотдачей по отношению к затрачиваемой на их работу энергии. К сожалению, несмотря на такое весомое достоинство, их спектр плохо воспринимается глазом человека. Зато преобладание желтых, красных и зеленых оттенков «по вкусу» растениям, поэтому этот вид источников света повсеместно применяется в тепличных хозяйствах.

Освещение натриевыми лампами

Бывает так, что светильник проектируют специально для подсветки в то время, когда солнца мало и его цветовой спектр максимально похож на естественное освещение. Даже в этом случае синего растениям не хватает.

Данный вид светильников имеет вполне ощутимые достоинства:

  1. Они стоят недорого и потребляют мало электроэнергии.
  2. Этот вид светильников прослужит долго – порядка двадцати тысяч часов.
  3. Несмотря на экономичность, светоотдача у них намного больше, чем у ламп накаливания.
  4. Эти изделия обладают большой теплоотдачей, поэтому отапливать теплицу зимой можно меньше.
  5. Имеют красно-оранжевый спектр, благодаря которому растение хорошо цветет и дает много плодов.
  6. Имеют коэффициент полезного действия более тридцати процентов.

К сожалению, такие источники освещения не лишены недостатков – они небезопасны, могут чересчур нагреваться.

Ртутные лампы

Для освещения в зимнее время для теплицы вполне могут использоваться ртутные лампы.

Их самым главным недостатком является то, что ртуть ядовита. Если бы не этот минус, такой вид светильников использовался бы повсеместно, их свет отлично влияет на культуры, и места они занимают мало. Однако безопасность превыше всего – случайное повреждение светильника требует сложной утилизации, поэтому обращаться с данным источником света нужно аккуратно.

Использование ртутных ламп для освещения парников

Ртутные светильники сильно нагреваются, кроме того их свет содержит много ультрафиолета. Это будет полезно, если рассада переросла или вытянулась.

Нужно грамотно утилизировать светильник – выбрасывать его в мусорный контейнер нельзя ни в коем случае. Если ртуть все же вылилась, собрать ее самому невозможно. К сожалению, придется выбрасывать растения и все предметы, если на них попала ртуть.

Металлогалогенные лампы

По своему световому спектру очень подходят для парников, но они дорогие и имеют недолгий срок службы, причем чем чаще включается светильник, тем быстрее он выйдет из строя.

Все изделия этого вида светят белым. Благодаря хорошему уровню цветопередачи их свет не искажает цвет предметов – все смотрится так же, как при дневном свете.

Достоинства этого вида источника энергии:

  • высоко отношение количества излучаемого света к потребляемой энергии;
  • они служат очень долго;
  • изделия небольшого размера.

К сожалению, минусов МГЛ не лишены:

  • стоят они недешево, если сравнивать их с остальными источниками света;
  • цвет световых лучей зависит от напряжения – небольшое его изменение будет заметно отражаться на цветовом спектре;
  • перед включением лампы должно пройти некоторое время, кроме того, если светильник отключался, перед повторным запуском должно пройти немного времени;
  • сами лампочки обычно закрывают в светильнике со всех сторон, так как при высоком напряжении существует вероятность взрыва.
Читайте также:  Какое нужно расстояние между помидорами: посадка рассады в грунт, на каком между кустами, в какое время - выращиваем в теплице

Светодиодные лампы

Светодиодные светильники для теплиц по-другому называют LED-лампами или фитолампами. Светодиодные лампы лучше всего использовать для искусственного освещения теплицы или домашнего парника для рассады.

Светодиодное освещение парников

Излучаемый ими свет лежит в узком диапазоне, другими словами, кристалл формирует конкретный узкий спектр, какой именно, зависит от состава используемых полупроводников. Применяя одновременно красный, желтый и синий LED, получают видимый свет белого цвета.

Освещение теплицы светодиодами имеет массу достоинств:

  • Они имеют длительный срок эксплуатации. Ежедневное использование освещения теплицы светодиодными лампами в течение пятнадцати часов возможно в течение пяти-двадцати лет, срок эксплуатации изделия зависит от компании-производителя.
  • Из всех изделий, которые предлагают производители, изделия LED потребляют меньше всех электроэнергии.
  • Имеется возможность регулировки интенсивности излучения.
  • Светодиодная лента и точечные светильники не выделяют тепловое излучение, что безопасно для растений в случае случайного соприкосновения.
  • Имеют оптимальный направленный спектр излучения для выращивания растений.
  • Они не боятся перемены температур и высокой влажности.

Светодиоды для теплиц лучше покупать в специализированном магазине

К сожалению, осветить всю теплицу светодиодами стоит недешево. Но так как этот вид светильников позволяет сэкономить электроэнергию и прослужит долго, расходы быстро окупятся.

Можно своими руками настроить освещение теплицы, для этого нужно подвести электричество и правильно разместить прожекторы.

Установить светильники для теплицы самостоятельно, конечно, можно, но нужно правильно посчитать их количество.

Для того чтобы рассчитать количество света, необходимое для растения, развитие которого происходит при рассеянном свете, нужно взять три тысячи люкс на квадратный метр помещения.

Правильно обустроить теплицу очень важно. Прозрачные теплицы необходимо меньше освещать, чем те, в которые проникает мало солнечных лучей, и которым необходима досветка.

Для того чтобы растениям было комфортно, перед установкой источников света нужно сделать светотехнический расчет.

Важно решить, чем следует освещать пространство: светодиодами или индукционными конструкциями, и какие материалы использовать, если вы устанавливаете освещение в теплице своими руками. Современное электронное управление позволит регулировать уровень света и обогрева.

Источник: https://LampaGid.ru/osveshchenie/flora-i-fauna/teplica

Индукционные светильники и лампы для растений в теплице

Индукционные светильники — это уникальный вид осветительного оборудования, что представляет собой модернизированную вариацию люминесцентных ламп.

 А благодаря своим широким показателям относительно регулировки температуры светового потока, долговечности и энергоэффективности — их применяют в агрономии в качестве искусственного источника дневного света, который крайне необходим для стимуляции процесса фотосинтеза (окисления с поглощением углекислого газа и выделением кислорода в открытую среду).

Используют индукционные лампы для теплиц, для подготовки рассады под посадку (в период закаливания), для выращивания клубники и помидоров на подоконнике. Но как их правильно выбирать и использовать? Необходимо ли для них дополнительное охлаждение?

Ключевое отличие индукционных ламп

Основа работы индукционной лампы построена на свечении ионизированного газа в закрытой колбе. Но при этом отсутствуют контактные электроды, за счет чего и достигается долговечность такого типа источника свечения.

Сам производитель утверждает, что при наработке в 60 тысяч часов такие лампы теряют всего 30% в своей производительности, однако на практике пока что этого не удалось подтвердить, так как должные исследования не проводились.

Но можно сравнить эти показатели с традиционными светодиодными лампами, которые сейчас признаны одними из лучших в плане энергосбережения. Последние очень часто не нарабатывают и этого времени из-за деградации кристалла. Уже при 30 тысячах они светят на 40% менее эффективно.

А ведь именно этот показатель является самым важным для растений. Еще нужно упомянуть, что индукционные лампы практически не генерируют тепло, поэтому их допускается использовать в непосредственной близости от рассады.

Со светодиодными лампами этого делать нельзя.

Во-первых, при потреблении мощности в 15-20 Вт им уже необходимо обеспечивать дополнительное охлаждение (как правило, продуваемый кулером радиатор), во-вторых, высокая температура крайне негативно сказывается на долговечности осветительного прибора.

Получается, что одна индукционная лампа может обеспечить светом больше растений, но при этом потребляет меньшее количество электроэнергии. Это может и не так важно при выращивании рассады в домашних условиях, но критично в промышленных фермерских масштабах, когда необходимо обеспечивать дневным светом участки на 20-40 и больше соток.

Однако низкое количество выделяемого тепла — это также и минус индукционных ламп. Довольно часто в теплицах также устанавливают инфракрасные лампы, которые направленно прогревают грунт или само растение. В случае со светодиодными этого не понадобится.

Индукционные светильники: особенности, область применения (видео)

Как выбрать индукционные светильники

Выбирая индукционные светильники, необходимо помнить о том, что чем выше их мощность — тем ниже срок предельной наработки.

Следует придерживаться следующих рекомендаций:

  • светоотдача в пределах 80-120 люмен на ватт (есть и более мощные модели);
  • фотооптическая эффективность в диапазоне 120-200 Фл;
  • необходим сферический светорассеиватель для покрытия большей площади;
  • устойчивость к низким температурам (производители утверждают, что такие лампы работают и при -400 C, не теряя в производительности).

То есть, даже при модернизации освещения отдаленных фермерских хозяйств не потребуется проводить трехфазное питание, как это бывает с некоторыми другими типами энергосберегающих ламп высокой мощности (прожекторного типа).

А так ли необходимы индукционные светильники для растений? Каждый агроном подтвердит, что недостаточное количество солнечного света — это основная из причин потери рассады.

Чаще всего ее поражает так называемая «черная ножка», нехватка калия (для его синтеза нужен свет).

Но так как не всегда есть возможность получить доступ к естественному освещению (тем более, в начале весны), индукционные лампы являются единственным возможным решением проблемы.

Индукционные лампы для гидропоники (видео)

Источник: https://teplichniku.ru/osveshchenie/chem-otlichaiutsia-induktcionnye-svetilniki-ot-drugikh/

Светодиодное освещение теплиц – самая подробная инструкция!

Системы освещения монтируют в теплицах круглогодичного или зимнего использования при выращивании светолюбивых овощей, ягод, рассады и цветов – без подсветки эти культуры не дадут хорошего урожая. Современные системы освещения теплиц все чаще выполняют на светодиодах: они экономичны, долговечны и позволяют регулировать спектр и освещенность в широком диапазоне.

Светодиодное освещение теплиц

Переносной светодиодный светильник для вертикального монтажа

Особенностью светодиодов является направленность их светового потока преимущественно в одном направлении

Потребность растений в солнечном свете

Известно, что дневной белый свет состоит из волн различной длины, в совокупности составляющих видимый спектр. Он ограничен длинами волн от 380 нм (фиолетовый) до 780 (красный).

Спектр солнечного излучения

Растения наиболее восприимчивы к синему, оранжевому и красному диапазонам светового спектра, при воздействии волн этой длины процессы фотосинтеза происходят наиболее интенсивно. Пики восприятия – 445 нм и 660 нм. Зеленую и желтую части спектра растения практически не поглощают. Именно этим объясняется окраска листьев – зеленые волны отражаются от растений.

Спектр для растений

При этом на разных фазах развития растениям требуется различное освещение. Так, при первоначальном активном росте и наборе зеленой массы полезнее синяя составляющая спектра, а в фазе цветения и плодоношения – красная.

Чтобы подсветка растений была эффективной, необходимо создать спектр света, близкий к дневному, а еще лучше – усилить красную и синюю части спектра и для экономии исключить бесполезную желто-зеленую составляющую.

Спектр светодиодной фитолампы

Не менее важный параметр – световой поток в данном спектре от 400 до 700 нм, или показатель фотосинтетической активной радиации. В характеристике ламп он обозначается аббревиатурой PAR и измеряется в микромолях на квадратный метр в секунду – µmol/m2·s.

Потребность различных растений в фотосинтетической активной радиации различна, примеры приведены на рисунке. При более низком показателе растение будет плохо расти и развиваться, при его превышении могут появиться ожоги на листьях.

Оптимальный диапазон PAR для роста и развития разных культур

При расчете экономичности светильников иногда используют понятие светоотдачи, или отношения световой мощности к потребляемой. Чем этот показатель выше, тем экономнее использование лампы и ниже затраты на электроэнергию.

Светоотдача разных типов ламп

Оптимальный светильник для освещения теплицы должен выдавать свет в нужном спектре с достаточным показателем PAR, при этом иметь возможность регулирования спектра в зависимости от фазы роста культур. Светодиодные фитолампы и светильники отвечают этим требованиям, они надежнее и экономнее других видов ламп.

Преимущества светодиодного освещения теплиц

В недавнем прошлом для освещения теплиц в основном использовали газоразрядные лампы. Спектр натриевых ламп высокого давления ДНаТ и ДНаЗ содержит преимущественно красную составляющую, что полезно для растений в фазе плодоношения.

Спектр натриевой лампы ДНаТ

При этом лампы ДНаТ почти не содержат синюю составляющую спектра, поэтому в фазе рассады для подсветки применяют газоразрядные ртутные лампы ДРЛ.

Спектр ртутной лампы ДРЛ

Газоразрядные лампы всех типов обладают большой световой мощностью, хорошим коэффициентом рассеяния, но при этом их световая отдача значительно ниже, чем у светодиодов, и большая часть энергии уходит на нагрев, влияя на микроклимат и увеличивая потери. Подвешивать лампы ДНаТ и ДРЛ необходимо на значительную высоту, чтобы избежать ожогов. В небольших теплицах с высокорослыми растениями их использование затруднено.

Лампы ДНаТ в теплице подвешивают на значительной высоте

Через 1,5-2 года использования световая мощность газоразрядных ламп снижается, они тускнеют и требуют замены. Из-за содержания ртути приходится применять специальные дорогостоящие методы утилизации.

Для подключения ламп ДНаТ и ДРЛ необходима пускорегулирующая аппаратура, что удорожает их первоначальную установку. Большие тепловые потери увеличивают энергопотребление, в результате освещение теплицы газоразрядными лампами обходится довольно дорого, особенно в зимний период.

Подключение лампы ДНаТ через пусковое устройство

Читайте также:  Теплицы урожай: пк, элит, классик, абсолют, эконом, характеристика, отзывы, фото, видео - выращиваем в теплице

По сравнению с газоразрядными лампами, светодиодные фитосветильники LED выдают свет в строго определенном диапазоне, что позволяет добиться максимального фотосинтеза. Пики излучения приходятся на 450 и 650 нм, что соответствует потребностям растений. Также светильник излучает мягкий ультрафиолет в диапазоне 320-380 нм, что повышает холодостойкость растений.

Спектр LED-светильников в сравнении с лампами ДНаТ и ДНаЗ

LED-светильники для освещения теплиц обладают рядом преимуществ:

  • хорошие показатели световой мощности;
  • подходящий для растений спектр и возможность его регулирования;
  • отсутствие нагрева и влияния на микроклимат в теплице;
  • простое подключение к сети;
  • малый расход электроэнергии;
  • экологичность – не требуется специальная утилизация;
  • ремонтопригодность – сгоревшие элементы можно заменить;
  • длительный срок службы – до 100000 часов.

Недостатки светодиодных светильников:

  • высокая цена;
  • направленное излучение, для большой площади требуется много точек освещения.

Благодаря низкому нагреву лицевой части, светильники LED можно размещать на любом расстоянии от растений, не рискуя их обжечь. За счет этого можно существенно сократить площадь теплицы для рассады и низкорослых культур, выращивая их на многоярусных стеллажах.

Выращивание рассады на стеллажах со светодиодной подсветкой

Видео – Сравнение ламп LED и ДНаТ для подсветки растений

Устройство светодиодных ламп и светильников

Светодиодные лампы и светильники для подсветки растений состоят из фитосветодиодов различного спектра, закрепленных на теплоотводящей шине из алюминия. Соединены последовательно в одну или несколько цепей и подключены к управляющему устройству – драйверу.

Все эти элементы помещены в корпус с высокой степенью защиты от влаги. Лицевая часть светильника закрыта рассеивателем из оптического поликарбоната с высоким светопропусканием.

Подключение светильника к сети выполняют с помощью сетевого провода без дополнительных устройств.

Устройство светодиодного светильника

Для фитосветильников используют специальные светодиоды с высокой мощностью, а добиться необходимого спектра можно двумя способами:

  • комбинируя светодиоды разного спектра в нужном соотношении;
  • используя полноспектральные светодиоды для растений.

В первом случае возможно регулирование спектра с помощью отключения части светодиодов.

Это удобно для выращивания растений в течение всего вегетационного периода: на стадии роста рассады соотношение красного/синего света составляет 1:1 или 2:1, с началом цветения и плодоношения синюю составляющую уменьшают, добиваясь соотношения красного и синего от 3:1 до 8:1. Светодиоды с полным спектром имеют установленное соотношение, изменить его не получится.

Комбинированный LED-светильник с соотношением красного и синего 4 к 1

Мощность светодиодных фитосветильников может достигать 1000 Вт и зависит от количества светодиодов.

С увеличением мощности усиливается нагрев, поэтому мощные светильники помещают в алюминиевый корпус и оснащают радиаторами для хорошего теплоотведения.

Существуют также модели светильников с вентиляторами, но они менее надежны: при поломке вентилятора произойдет моментальный перегрев светодиодов и, как следствие, выход из строя.

Светодиодный светильник с алюминиевыми радиаторами

Выбор светодиодных светильников для теплиц

Мощность светильников подбирают, исходя из площади теплицы. По нормам технологического проектирования теплиц для рассады и выращивания зелени облученность должна быть не менее 25 Вт/м2, для овощных культур в стадии плодоношения и цветов – не менее  70 Вт/м2. Оптимальные значения для большинства культур составляют 80-160 Вт/м2.

Мощность светодиодных светильников для растений

Спектр светильников и ламп подбирают, исходя из выращиваемых в теплице культур. Для рассады, ранней зелени и выгонки цветов предпочтительнее лампы с увеличенной составляющей синего света и мягкого ультрафиолета. Для выращивания ягод и овощей подходят лампы с соотношением красного и синего от 4:1 до 8:1.

Светильник для рассады с увеличенной синей составляющей

Еще один важный параметр – угол освещения. Он может составлять 60, 90, 120 градусов. Светильники с углом 60 градусов подходят для направленного освещения, их обычно устанавливают над стеллажами на малой высоте. Угол 90 и 120 градусов позволяет получить более рассеянный свет, такие светильники подвешивают к потолку на цепях или кронштейнах.

Расположение светильников на кронштейнах при общей подсветке

Размещение светильников в теплице

Обзор моделей LED-светильников

Ассортимент светодиодных светильников для теплиц достаточно велик. В таблице представлены несколько моделей, предназначенных для разных типов растений.

Таблица 1. Обзор LED-светильников для теплиц.

МодельТехнические характеристикиНазначение
LED-ФИТО-45/RS Мощность – 45 Вт; PAR – 100 µmol/m2·s; угол освещения – 120 градусов; спектр 730 нм – 8%, 660 нм – 46%, 450 нм – 46%; срок службы – 100000 часов. Для выращивания пряной зелени, лука, салатов, капусты, выгонки цветов. Освещаемая площадь – до 2 м2.
LED-ФИТО-168/RS Мощность – 180 Вт; PAR – 400 µmol/m2·s; угол освещения – 120 градусов; спектр 730 нм – 8%, 660 нм – 46%, 450 нм – 46%; срок службы – 100000 часов. Для выращивания пряной зелени, лука, салатов, капусты, выгонки цветов. Освещаемая площадь – до 7,2 м2.
LED-ФИТО-45/UN Мощность – 45 Вт; PAR – 100 µmol/m2·s; угол освещения – 120 градусов; спектр 730 нм – 13%, 660 нм – 62%, 450 нм – 25%; срок службы – 100000 часов. Для томатов, перцев, баклажанов, огурцов и других овощей в период активного плодоношения. Освещаемая площадь – до 2 м2.
LED-ФИТО-168/UN Мощность – 180 Вт; PAR – 400 µmol/m2·s; угол освещения – 120 градусов; спектр 730 нм – 13%, 660 нм – 62%, 450 нм – 25%; срок службы – 100000 часов. Для томатов, перцев, баклажанов, огурцов и других овощей в период активного плодоношения. Освещаемая площадь – до 7,2 м2.
LED-ФИТО-42/VR Мощность – 45 Вт; PAR – 100 µmol/m2·s; угол освещения – 120 градусов; спектр 730 нм – 13%, 660 нм – 25%, 450 нм – 62%; срок службы – 100000 часов. Для выращивания рассады, саженцев, салатов. Освещаемая площадь – до 2 м2.
LED-ФИТО-168/VR Мощность – 180 Вт; PAR – 400 µmol/m2·s; угол освещения – 120 градусов; спектр 730 нм – 13%, 660 нм – 25%, 450 нм – 62%; срок службы – 100000 часов. Для выращивания рассады, саженцев, салатов. Освещаемая площадь – до 7,2 м2.

Видео – Обзор светодиодных фитоламп для растений

Светодиодный светильник для рассады своими руками

Мощные светильники для теплиц – сложные устройства с точно просчитанным тепловым балансом и защитой от влаги. Сделать их самостоятельно сложно – неправильный тепловой расчет может привести к выходу дорогостоящих светодиодов из строя при первом же перегреве.

Если вы планируете заняться выращиванием овощных или цветочных культур в промышленных объемах, светодиодные светильники лучше приобрести у производителя, а проект освещения заказать у профессионалов. Так вы получите гарантию сбалансированного спектра, длительной работы системы освещения и пожарной безопасности.

Светодиодный светильник для выращивания рассады или зелени в домашней теплице можно сделать самостоятельно.

Освещение рассады самодельным светильником

Для этого вам понадобятся:

  • светодиодные матрицы с полным спектром, 10 штук;
  • LED-драйвер;
  • алюминиевый профиль, дверной или мебельный, длиной 1 м;
  • F-образный пластиковый профиль длиной 2 м;
  • крепежные кронштейны;
  • термоклей;
  • провода МГТФ для соединения светодиодов, сечение 0,1-0,14 мм;
  • провод двужильный и штепсельная вилка;
  • пластиковые хомуты;
  • дрель со сверлом по металлу и пластику;
  • острый монтажный нож;
  • паяльник, флюс и припой, а также теплоотвод, чтобы при пайке не перегреть светодиоды.

Пошаговая инструкция сборки светильника приведена в таблице 2.

Таблица 2. Светильник для подсветки рассады своими руками.

Этапы, фотоОписание действий
Покупка светодиодов и драйвера Светодиоды и драйвер можно купить в розничном магазине, но стоят они недешево, и найти их бывает сложно. Для снижения цены лучше поискать их на китайских сайтах Ebay или Aliexpress. Мощность светодиодов – 3 Вт, спектр – от 400 до 840 нм с отметкой “full spectrum”. Лучше взять их с запасом в 1-2 штуки на случай брака или выхода из строя. Мощность драйвера – не менее 30 Вт, ток – 600 мА. Для удобства монтажа лучше подобрать драйвер в герметичном пластиковом корпусе.
Проверка полярности светодиодов На выводах светодиодных матриц полярность должна быть указана, но чтобы не перепаивать светильник в случае брака, лучше проверить ее до монтажа. Проверку выполняют мультиметром, установленным в режим «проверки диода». Подсоединяют щупы согласно указанной полярности к контактным дорожкам, при этом диод должен светиться.
Подготовка алюминиевого профиля для теплоотводящей шины Алюминиевый профиль можно приобрести в мебельном магазине. Обрезают профиль длиной 1 м, торцы зачищают наждачной бумагой, чтобы не было заусенцев – ими можно повредить провода при использовании светильника или поцарапать руки. Профиль с монтажной стороны обезжиривают спиртом или растворителем.
Обезжиривание светодиодов Металлическую площадку светодиодных матриц также обезжиривают спиртом или растворителем с помощью ватного диска. До монтажа можно оставить светодиоды прямо на дисках, чтобы повторно не испачкать.
Крепление светодиодов на термоклей Размечают места крепления светодиодов на алюминиевой шине через равные расстояния 9 см. Термоклей наносят на обезжиренную нижнюю поверхность светодиодных матриц по всей площади тонким слоем. Приклеивают светодиоды, стараясь располагать их плюсовыми выводами в одну сторону – так проще будет паять провода.
Соединение светодиодов пайкой Нарезают монтажный провод МГТФ на отрезки 12-13 см, зачищают концы и облуживают их с помощью паяльника. Припаивают провода к светодиодам, соблюдая полярность: плюс первого светодиода к минусу второго и так далее. При пайке используют теплоотвод – металлический пинцет.
Подключение светодиодов к драйверу В шине с обратной стороны делают 2 отверстия Ø3-4 мм в центре и одно отверстие Ø10 мм на расстоянии 10-15 см от них. От провода МГТФ отрезают два куска длиной 75 см, продевают их в отверстия и выводят с разных концов шины. Припаивают их концы к крайним светодиодам. Провода подписывают согласно полярности. Двужильный провод со штепсельной вилкой заводят с одного конца шины и выводят через большее отверстие. Концы жил зачищают и облуживают. Подключают к драйверу согласно схеме, указанной на крышке или в документации.
Установка светоотражателей Светоотражатели выполняют из пластикового профиля F-образной формы. Его используют для отделки оконных откосов. У профиля срезают внутреннюю пластину на высоту 2-3 мм с помощью ножниц или ножа. Отрезают от него два куска длиной 1 м. Складывают их вместе и делают разметку отверстий под крепежные хомуты – 4-5 отверстий на одном уровне. Проколоть их можно раскаленным шилом. Оставшуюся пластину пластикового профиля заводят внутрь алюминиевого профиля, продевают сквозь сделанные отверстия хомуты и затягивают их. Пластиковый профиль образует отражатели, которые достаточно прочно держатся на шине.
Крепление лампы К верхней стороне светильника крепят подвесы или монтажные кронштейны (в зависимости от места установки). Подвешивают лампу над рассадой на высоте от 20 до 40 см. Включают в сеть и проверяют работоспособность.
Читайте также:  Томат каспар: характеристика и описание сорта, отзывы, фото, урожайность, видео - выращиваем в теплице

Видео – Комбинированный светодиодный светильник своими руками

Светодиодные светильники позволяют сэкономить электроэнергию для освещения теплицы, при этом фотосинтез растений ускоряется, урожайность увеличивается на 10-30%, а скорость созревания первых плодов – на 5-14 дней. При правильном расчете и эксплуатации светодиодное освещение теплицы окупается в первые два-три сезона, в дальнейшем оно способствует получению стабильного урожая и прибыли.

Источник: https://teplica-exp.ru/svetodiodnoe-osveshhenie-teplic/

Индукционные лампы для выращивания растений в тепличных хозяйствах

В основе индукционной лампы лежит все та же стеклянная трубка, покрытая с внутренней стороны люминофором. Ртутная амальгама, находящаяся в газообразном состоянии внутри нее, подвергается электромагнитному воздействию высокой частоты, от чего начинает испускать ультрафиолетовое излучение. Люминофор при этом светится в видимом диапазоне, обеспечивая стабильный поток света.

Трубка с ртутью запаяна наглухо и не имеет переходов, стыков с другими материалами. Нет рисков по разгерметизации или коррозии мест соединения. Колбы закольцованы  тороидальной формы или прямоугольной.

Возбуждение ртути выполняется с помощью ферритовых колец, создающих под действием индукционных токов мощное магнитное поле.

Более подробно о технических характеристиках индукционных ламп читайте в этой статье.

За поддержание магнитного поля отвечает электронный балласт, подключаемый к катушкам на ферритовых кольцах. Этот балласт может быть как неотъемлемой частью, так и подключаться извне. В первом случае приобретается полностью работоспособное устройство в сборе. Внешний балласт позволяет оперативно и дешево заменять лампы при необходимости.

Конструкция индукционной лампы

Срок службы у индукционных ламп по заявлению производителей составляет 100 000 часов, чем могут похвастаться разве что светодиодные системы, и что на порядки выше срока службы натриевых, ртутных или биметаллических газоразрядных ламп.

Спектр излучения формируется по тем же правилам, что и у обычных люминесцентных. Он хорошо подходит для выращивания растений. О требованиях к искусственному освещению растений рассказано тут.

Отдельные типы ламп выпускаются со сбалансированным в определенных пропорциях соотношением красного и синего спектра, например 4:4,9. Есть варианты комбинированных устройств, где одна половина лампы испускает красный спектр, а вторая синий, или же компонуются несколько колб.

В последнем случае к колбе со сбалансированным светом добавляется меньшая, испускающая красный спектр меньшей интенсивности.

Индукционный светильник для растений ВСПт

Виды индукционных ламп для подсветки растений

Для тепличных хозяйств освещения растений выпускаются специализированные индукционные лампы, у которых спектр наилучшим способом заменяет естественное освещение от солнца:

  • ТИЛгп – универсальная лампа со сбалансированным спектром, который подойдет для любых растений в период роста и плодоношения. Красный и синий спектры в ней соотносятся как 40% и 49%. Подойдет для использования в теплицах, зимних садах и освещения растений в квартирах и домах.
  • ТИЛвг – более специфичный вариант, который лучше всего использовать в период проращивания растений и их вегетативного выращивания, не предполагающего цветения. Доля синего спектра увеличена до 59%, а красного, наоборот, снижена до 31%.
  • ТИЛфл – тоже узкоспециализированная лампа. Эффективнее всего использовать ее для освещения растений в момент плодоношения при условии, что для них будет оптимальным увеличение красного спектра до 50%.
  • ТИЛгп(фл)+кл – уже упомянутая лампа для полной имитации естественного солнечного освещения, с помощью дополнительного управления можно воссоздавать эффект восхода и заката солнца с соответствующим изменением суммарного спектра.

Размещение индукционной лампы в домашней теплице

Способы распределения ламп и их установки

В отличие от других аналогов, даже  привычных люминесцентных, индукционные лампы не создают чрезмерного теплового потока, вся конструкция вместе с электрическим балластом не выделяет много тепла. Это позволяет распределять источники света в непосредственной близости от растений или поверхности почвы.

Индукционные лампы в освещении теплицы

Чтобы направить максимальное количество света в нужный сектор, используются светоотражающие экраны различной формы. Чаще всего у экранов имеются крылышки, лепестки с изменяемым углом разворота, корректирующих сектор освещенности. Может использоваться параболический отражатель, способный равномерно распределить свет по всей высоте растения.

Источник: http://indeolight.com/obekty-osveshheniya/vnutrennee/teplitsa/induktsionnye-lampy-dlya-rastenij.html

Индукционная лампа для освещения теплицы

Достаточное количество света – одно из основных условий успешного выращивания растений в теплице. Дополнительное искусственное освещение восполняет необходимый объем жизненно важной для культур энергии.

В этих целях используются разные по конструкции осветительные приборы.

В настоящее время на арену выходят индукционные лампы, обладающие рядом положительных качеств: высокой светоотдачей, энергоэффективностью, нужными спектральными характеристиками и большой длительностью работы.

Об индукционной лампе ↑

Предшественником данного устройства является люминесцентная лампа. Ее усовершенствовали, убрав электроды и добавив катушку индуктивности. В настоящее время налажено промышленное производство индукционных ламп и соответствующих светильников для разных целей. Изготовить индукционную лампу своими руками довольно трудно, нужны специальные навыки, детали и оборудование.

Из чего состоит ↑

Конструкция индукционной лампы не отличается большой сложностью, прибор состоит из таких основных частей:

  • Замкнутая стеклянная колба (газоразрядная трубка), наполненная ионизированным газом и покрытая внутри люминофором (веществом, способным светиться при возбуждении).
  • Магнитное кольцо (или стержень) с индукционной катушкой.
  • Генератор тока высокой частоты – электронный балласт, который питает катушку. (Балласт располагается отдельно или находится в одном корпусе с лампой.)

Выращивание растений под индукционным освещением

Принцип работы ↑

Действие прибора основано на явлении электромагнитной индукции.

Под воздействием высокочастотного электромагнитного поля в герметичной трубке газ ионизируется и превращается в плазму. Начинает выделяться энергия, которую слой люминофора преобразовывает в световое излучение. Так как в колбе нет выгорающих деталей – электродов, это значительно увеличивает срок службы индукционных ламп.

Достоинства  индукционных ламп ↑

Для успешного развития растений освещение должно быть максимально приближено к солнечному, поэтому важно наличие у искусственных приборов свойств, сходных с природным источником. Индукционные лампы обладают такими качествами, а также имеют другие преимущества:

  • Для осуществления удовлетворительного процесса фотосинтеза в тканях растений нужен синий спектр видимого излучения, а для хорошего формирования, развития и созревания плодов – красный. Индукционные лампы излучают световой поток, который довольно близок по спектральному составу к солнечным лучам.
  • Они обладают высокой интенсивностью излучения с равномерной светоотдачей, не мерцают.
  • Со временем световой поток таких ламп остается стабильно высоким.
  • Они затрачивают по сравнению с другими видами в разы меньше электроэнергии, быстро включаются-выключаются.
  • Не сильно нагреваются, что позволяет располагать их близко к растениям, а также мало влияют на температуру окружающего воздуха.
  • Производителями заявлен большой срок службы (около 20 лет) и 5 лет обслуживания по гарантии.
  • Неприхотливость к внешним условиям дает возможность стабильной бесперебойной работы в границах от -40 до +50°С.
  • Наличие встроенного стабилизатора защищает приборы от перепадов напряжения.

Строение индукционной лампы

При желании использовать новейшие технологии для дополнительного освещения, следует выбрать самые подходящие модификации индукционных светильников. Также важно разместить их в тепличных помещениях наиболее оптимальным образом.

Как выбрать ↑

В зависимости от светолюбивости культуры, выращиваемой в теплице, подбирают осветительные приборы необходимой мощности и спектра. Нужно продумать возможность изменения интенсивности освещения для разных видов растений и на всех этапах их развития.

Так как индукционные лампы довольно дорогие, применять их для совсем небольших объемов выращивания культур нецелесообразно. Зато в случае потребности искусственного света в больших объемах значительное сокращение энергозатрат компенсирует расходы на покупку.

Существует несколько видов индукционных светильников для теплиц:

  • Универсальные со сбалансированным соотношением красного спектра видимого излучения и синего подходят для любых культур во время всего вегетативного периода.
  • Универсальные с дополнительной возможностью регулирования суммарного спектра, приближающего его естественному состоянию при восходе и закате.
  • С преобладанием синего спектра для начального развития и наращивания зеленой массы растений.
  • Для периода плодоношения – с преобладанием красной части спектра излучения.

Теплица с индукционными светильниками
Индукционные светильники для теплиц

Конструкция индукционного светильника позволяет надежно работать в местах с повышенной влажностью. Возможна дополнительная оснащенность различными датчиками (например, освещенности). Очень полезная функция – регулирование интенсивности светового потока.

Рекомендации по эксплуатации ↑

Индукционные светильники можно размещать на тросах таким образом, чтобы регулировать их положение по высоте.

При необходимости прибор приближают к растениям на расстояние до 20 см, его небольшой нагрев не позволит повредить листья и высушивать воздух.

Для долгой безотказной службы нужно соблюдать несложные технические условия по установке и правильной эксплуатации. Индукционный светильник легко смонтировать под куполом теплицы самостоятельно согласно инструкции, не прибегая к помощи специалистов.

Использование специальных приспособлений – отражателей (экранов с различными по форме поверхностями) позволяет направлять световой поток в нужное место теплицы.

Популярность индукционных светильников в тепличном хозяйстве обусловлена максимально подходящим по спектру диапазоном и большой мощностью излучения, применением энергосберегающих технологий и относительно быстрой окупаемостью.

Источник: http://teplicnik.ru/obustrojstvo/indukcionnaya-lampa-dlya-teplicy.html

Ссылка на основную публикацию